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ABSTRACT  
To gain stable operation of a hydro power plant, it is mostly a matter of having the right ratio between 
the time constant of the rotating masses, Ta, and the time constant for the water masses, Tw. If 
Ta/Tw> 6 (or at least >4), the stability is normally not a problem. However, for power plants with long 
penstocks, this criterion is not enough. The elastic property of the penstock becomes an issue. The 
solution of the wave equation includes a term, which mathematically is defined as tanh (tangents 
hyperbolicus). This function is notorious unstable. It has a similarity to the tan-function, which goes 
from to ±∞ as it approaches ± 90 o. The cross frequency defines the frequency up to which the 
governor will function. Above the cross frequency, any disturbance will go without any interference 
from the governor. Therefore, the issue is to make sure that the elastic frequency is well above the 
cross frequency.  
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1. INTRODUCTION 
Simulations with the purpose of controlling system stability is preferably done in the frequency 
domain, because then all the eigen frequencies of the system are identified. If there is a stability 
problem, the cause can easily be detected. This is not the case if one do the simulations in time 
domain.  
 
The differential equations for the system must be linearized around the point of operation, i.e. at a 
given flow Q0, head, Ho and speed of rotation n0, and then Laplace transformed to frequency domain. 
The system is hereby defined by it’s transfer functions presented in a block diagram. This is a well 
documented method. There are numerous methods to analyse the result by graphical representation, 
like Bode, Nyquist, Nichols, Root-locus to mention a few. They all ends up finding the stability 
margins, i.e. the Phase margin and the Gain margin.  
 
The transfer function of a hydro power plant assumed rigid penstock is shown in Fig. 1. The most 
important time constants are Tw and Ta. Tw is the time constant for the inertia of the water masses, 
which is defined as the time it takes to accelerate the water masses from zero to nominal flow. The 
water masses participating in the governing process is from the nearest surface up-stream the turbine 
to the nearest water surface down-stream the turbine. Ta is the time constant for the rotating masses, 
which is defined as the time it takes to accelerate the rotating masses, i.e. mainly the generator, from 
zero to nominal speed of rotation with full torque.  
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Figure 1: Block diagram for hydro power plant 
 
Tw can be derived using Newton’s 2. Law: 
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Tw is highly dependent on the hydraulic design of the power plant, while Ta is more or less given by 
the generator manufacturer. 
 
The transfer function between the guide vane position, y, and the hydraulic power, ph, is in more detail 
shown in Figure 2. 
 
 

  
 

Figure 2 Block diagram between guide vane position y and power, p, rigid penstock 
 
If one include the elastic property in the penstock, the solution of the Allievi equation [3] will include 
a tanh-function; hence, the block diagram will be as shown in Fig. 3. The constant, hw, is the Allievi 
constant, which is defined as: 
 

2
o

w
o

Q ah
AgH

=         (2) 

 
The normal criterion is that if hw>1, preferable a good deal bigger than 1, the elasticity can be 
disregarded. 
 

 
 
Figure 3 Block diagram between guide vane position, y, and hydraulic power, ph. Elastic penstock. 
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The Allievi constant is in fact the ratio Tw/Tr, where Tr is the reflection time of the elastic wave: 
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Where L is the length of the penstock an a is the pressure propagation speed or the speed of sound. 
The criterion hw>1 can then be interpreted as: 
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The cross frequency is very near 1/Tw, so hw>1 means that the frequency for the elastic waves must be 
higher, or even far higher than the cross frequency. In that case, the governor will not react on the 
elastic waves, and the elasticity will not be a stability issue. 
 
 
2. COMPARISON OF THE RIGID AND ELASTIC TRANSFERE FUNCTION 
 
The two block diagrams shown in Fig. 2 and Fig. 3,  gives the two following transfer functions 
between guide vane position and power: 
Rigid: 
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Elastic:  
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Where s is the complex variable: s jω= . 
 
According to methods described in control theory [1, 2] the amplitude and the phase angle can be 
solved and gives an illustration of the difference between rigid and elastic representation. In general, 
for a transfer function: 
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The amplitude is: 
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The phase angle is:  
 

1 2 3 4( ) atan( ) atan( ) atan( ) atan( )A j T T T Tω ω ω ω ω∠ = + − −    (9)
  
 
For the rigid transfer function, the calculation is rather straight forward. For the elastic transfer 

function, the complex variable s in the expression tanh( )L s
a

makes a problem. The complex “j” has to 

be outside the parenthesis. Using Euler equation cos sinje jφ φ φ= +  , illustrated in Fig. 4, makes it 
possible to rearrange the equation. 
 

 
Figure 4 Illustration of the Euler equation 

 
The Euler equation for this particular case: 
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Inserted in the equation for the tanh term, mathematically defined as: 
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The tanh(L/as) term has transformed to j tan(L/aω) and the amplitude and angle can be calculated. 
 
For the rigid transfer function: 
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Phase angle:  ( ) atan( ) atan(0.5 )w wA j T Tω ω ω∠ = − −     (15) 
 
For the elastic transfer function: 
 

Amplitude: 
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Phase angle: ( ) atan(2h tan( )) atan(h tan( ))w w
L LA j
A A

ω ω ω∠ = − −   (17) 

Solving the equations for increasing ω, the result is shown in Figure 5 and Figure 6, left Figure rigid 
and right Figure elastic property. 

   
 
Figure 5 Rigid (left) and elastic transfer function plotted in a Re-Im plane. 
 

The difference is that the rigid function goes from 1 and stops at -2 on the Re-axes, while the elastic 
function takes the whole turn all the way back to 1 again. The intuitive explanation of this is that the 
rigid just stops, while the elastic one bounces back due to the elasticity. 
 
Figure 6 shows the same performance in a Bode plot (Amplitude and Phase vs frequency) 
 

      
 
Figure 6 Bode plot for rigid and elastic penstock 
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3. CONSEQUENCE FOR THE STABILITY SIMULATION OF A POWER PLANT 
To establish if a power plant is stable or not, is a question of checking the stability margins, i.e. the 
amplifying margin and the Phase margin. The complete transfer function of the power plant must be 
established and the amplitude and phase angle calculated as a function of the frequency. There are 
many ways of plotting the result in order to find a conclusion on whether the stability margin is 
satisfactory. The author prefers the Bode plot, however to plot the result in a Re-Im plan, Nyquist 
diagram, might give additional information. 
 
The complete transfer functions for rigid and elastic model is: 
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Elastic:  
w

d N
2

t d a
w

L(1 2h tanh( s))(1 T s)(1 T s)1 aA( j )
Lb T T s (1 h tanh( s))
a

−+ +
ω =

+
   (19) 

For the rigid function the Amplitude is:  
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And the Phase angle is: 
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Because of the negative sign in the expression w(1 T s)− in the numerator of eq.18, the phase shift is 
negative. This is the key issue regarding stability and Tw. It makes the phase go towards -1800. The -π 
term in eq. 21 comes in because of the two poles at s=0. 
For the elastic function the Amplitude is: 
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And the phase angle is: 
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Figure 8 shows Bode plots for both rigid an elastic model. Ignoring the elasticity of the penstock, the 
hydro power plant seems to be stable as both Phase margin and Gain margin is sufficient. Including 
the elasticity, the system is on the border of instability, as shown in Fig. 8, right. 
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Figure 8: Bode plots. Left side shows the rigid simulation and right side the elastic simulation, 
Tw = 0,71sec, Ta=6sec, hw=0.45. In the upper Figures, A is open loop, M is closed loop and N 
is the sensitivity. The two figures at the bottom shows the same, plotted in Re-Im plane 
(Nyquist diagram) 

 
The PID parameters used for the simulations shown in Figure 8 are bt=0.1, Td=6sec, TN=0.0. It is of 
course possible to stabilize the system by tuning the PID parameters, however, the cross frequency 
will easily be at too low frequency, which means that the governing will be to slow and standing 
oscillations will occur. Increasing the inertia of the generator, i.e. increasing Ta will have the same 
effect. 
 
 
4. CONCLUSIONS  
High head power plants have often long penstocks, which makes the reflection time, Tr, too big 
compared to Tw. It is quite possible to achieve a Tw<1, which is often the design criterion used, and 
still get instability because of the elastic property of the penstock. In order to design a stable system 
with sufficient stability margins, Allievi’s constant must be checked by calculating the ratio Tw/Tr . 
This ratio, Allievi’s constant, should be at least bigger than 1. 
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Which means that the frequency of the elastic wave must be bigger than the cross frequency, which is 
very near 1/Tw. 
 

Phase margin 
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If this criterion is not fulfilled, it might still be possible to make the system stable by optimizing the 
governor settings; however, the quality of the governing system will be lousy. 
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6. NOMENCLATURE 

Tw (s) Penstock time constant a (m.s-1) Pressure propagation speed 
Ta (s) Time constant for rot. masses L (m) Length of penstock 
Td (s) Dash-pot time constant hw (-) Allievie’s constant 
TN (s) Derivative time constant s (-) Complex variable 
Tr (s) Reflection time q (-) Dimensionless flow 
bt (-) Transient speed droop h (-) Dimensionless head 
y (-) Guide vane position p (-) Dimensionless power 
µ (-) Dimensionless speed of rotation    
      
      
      

 


